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ABSTRACT 

Nonlinear phenomena play a crucial role in applied mathematics and physics. 
Although it is very easy for us now to find the solutions of nonlinear problems by 
means of computers, it is still rather difficult to solve nonlinear problems either 

numerically or theoretically. One of the most famous of the nonlinear fractional 
partial differential equations which called the time-fractional reaction-diffusion 
equation in this paper, we compare numerical solutions for time-fractional reaction-
diffusion equation using variation iteration, homotopy perturbation, adomian 
decomposition and differential transform methods. The fractional derivatives are 
described in the Caputo sense. The methods in applied mathematics can be used as 
alternative methods for obtaining analytic and approximate solutions for different 
types of fractional partial differential equations. The approach rest mainly on two-

dimensional differential transform method which is one of the most efficient from 
approximate methods. The method can easily be applied to many linear and 
nonlinear problems and is capable of reducing the size of computational work. An 
example is given to demonstrate the effectiveness of the present method. 
 
Keywords:  Fractional differential equation, differential transform method, time-
fractional reaction-diffusion equations. 

 

 

1. INTRODUCTION 

There is a long-standing interest in extending the classical calculus 

to non-integer orders (Oldham and Spanier (1974); Podlubny (1999); 

Caputo (1967)) because fractional differential equations are suitable models for 
many physical problems. The development of this generalized calculus, 

however, has been consistently hampered because many fractional differential 

equations are nonlinear and have no exact analytical solutions that can be 
likened to the classical case. Many numerical schemes have been proposed 

over the years to approximate the solutions of fractional equations, for example, 
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the Adomian Decomposition Method (ADM) (Yu et al. (2008); Jafari et al. 
(2007)), the Variation Iteration Method (VIM) (Momani (2007); Odibat and 

Momani (2006); Yulita et al. (2009)), the Homotopy Perturbation Method 

(HPM) (Momani and Odibat (2007), the Differential Transform Method (DTM) 
(Momani et al. (2007); Oturanc et al. (2008). 

 

Consider the nonlinear initial-boundary value time-fractional 

reaction-diffusion parabolic problems 
 

( )1t xxD Du mu uα = + −                (1) 

 

subject to initial conditions 

 

( ) ( ),0u x f x=     (2) 

 

where u  is a function of x  and t , ( )f x  is a known analytic function. These 

equations were first introduced by Fisher as a model for the propagation of a 
mutant gene. It has wide application in the fields of logistic population 

growth, flame propagation, europhysiology, autocatalytic chemical reactions, 

branching Brownian motion processes, and nuclear reactor theory (Fisher 

(1937); Murray (1977); Britton (1986); Frank (1955)). 
 

In this paper, we compare numerical solutions of time-fractional 

reaction-diffusion equation using homo-topy perturbation (Momani and Odibat 
(2007a)), variational iteration (Odibat and Momani (2008b)), adomian 

decomposition (Odibat and Momani (2008b)) and differential transform 

methods. We solve time-fractional reaction-diffusion equation by the 
differential transform method. The main advantage of the method is the fact 

that it provides its user with an analytical approximation, in many cases an 

exact solution, in a rapidly convergent sequence with elegantly computed 

terms. 
 

 

2. BASIC DEFINITIONS 

In this section, we present some basic definitions and properties of the 

fractional calculus (Podlubny (1999); Caputo (1967)). 
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Definition 1 A real function ( ) , 0f x x >  is said to be in the space ,Cµ  

Rµ ∈  if there exists a real number ( ),p µ>  such that ( ) ( )1 ,pf x x f x=  

where ( ) [ )1 0,f x C∈ ∞  and it said to be in the space 

, .
m m

C iff f C m Nµ µ∈ ∈  

 
Definition 2 The Riemann-Liouville fractional integral operator of 

order 0α ≥  of a function , 1f Cµ µ∈ ≥ −  is defined as 

( )
( )

( ) ( )
1

0

0

1
, 0,

x

J f x x t f t dt
υυ υ

υ

−
= − >

Γ ∫  

( ) ( )0 .J f x f x=  

 
It has the following properties: 

 

For , 1, , 0f Cµ µ α β∈ ≥ − ≥  and 1γ > : 

1. ( ) ( ) ,J J f x J f xα β α β+=  

2. ( ) ( ) ,J J f x J J f xα β β α=  

3. 
( )

( )
1

.
1

J x xα γ α γγ

α γ
+Γ +

=
Γ + +

 

 

The Riemann-Liouville fractional derivative is mostly used by 

mathematicians but this approach is not suitable for the physical 

problems of the real world since it requires the definition of 
fractional order initial conditions, which have no physically 

meaningful explanation yet. Caputo introduced an alternative 

definition, which has the advantage of defining integer order initial 
conditions for fractional order differential equations. 

 

Definition 3 The fractional derivative of ( )f x  in the Caputo sense 

is defined as 
 

( ) ( )
( )

( ) ( ) ( )
1

0

1
,

x
m mm m

aD f x J D f x x t f t dt
m

υυ υ

υ

− −−
∗ = = −

Γ − ∫  

 

for 1 ,m mυ− < <  ,m N∈  0,x > 1.
mf C−∈  
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Lemma 4 If 1 ,m mα− < < m N∈  and , 1,
m

f Cµ µ∈ ≥ −  then 

( ) ( ),D J f x f xα α
∗ =  

( ) ( ) ( )
1

0

0 , 0.
!

m k
k

k

x
J D f x f x f x

k

α υ
−

+
∗

=

= − =∑  

 

The Caputo fractional derivative is considered here because it allows 

traditional initial and boundary conditions to be included in the 

formulation of the problem. 
 

Definition 5 For m
 
to be the smallest integer that exceeds ,α  the 

Caputo time-fractional derivative operator of order 0α >  is defined 

as 

 

( )
( ) ( )

( )
( )

( )

1

0

,1
, 1 ,

,
,

,
,

t m
m

m

x
m

m

u x
t d for m m

u x t m
D u x t

t u x t
for m N

t

α

α
α

α

ξ
ξ ξ α

α ξ

α

− −

∗

 ∂
− − < <

∂ Γ − ∂
= = 

∂ ∂
= ∈

∂

∫

 

and the space-fractional derivative operator of order 0β >  is defined 

as 

 

( )
( ) ( )

( )
( )

( )

1

0

,1
, 1 ,

,
,

,
, .

x m
m

m

x
m

m

u t
x d for m m

u x t m
D u x t

x u x t
for m N

x

β

β
α

β

θ
θ θ β

β θ

β

− −

∗

 ∂
− − < <

∂ Γ − ∂
= = 

∂ ∂
= ∈

∂

∫

 

 

3. DIFFERENTIAL TARNSFORM METHOD 

The DTM is applied to the solution of electric circuit 

problems. The DTM is a numerical method based on the Taylor series 
expansion which constructs an analytical solution in the form of a 

polynomial. The traditional high order Taylor series method requires 

symbolic computation. However, the DTM obtains a polynomial series 
solution by means of an iterative procedure. The method is well addressed in 

Momani et al. (2007). 
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Consider a function of two variables ( ),u x y  and suppose that it can 

be represented as a product of two single-variable functions, i.e., 

( ) ( ) ( ), .u x y f x g y=  Based on the properties of generalized two-dimensional 

differential transform (Bildik et al. (2006); Abdel-Halim (2008)), the 

function ( ),u x y  can be represented as 

 

( ) ( )( ) ( )( )

( )( ) ( )

0 0

0 0

0 0

0 0

,

,

k h

k h

k h

k h

u x y F k x x G h y y

U k h x x y y

α β

α β

α β

αβ

∞ ∞

= =

∞ ∞

= =

= − −

= − −

∑ ∑

∑∑
             (3) 

 

where 0 ,α< 1,β ≤  ( ) ( ) ( ),U k h F k G hαβ α β=  is called the spectrum of 

( ), .u x y  The generalized two-dimensional differential transform of the 

function u(x, y) is given by 

 

( )
( ) ( )

( ) ( ) ( )
( )

0 0

0 0

,
,

1
, , ,

1 1

hk

x y
x y

U k h D D u x y
k h

α β
α β

α β
∗ ∗

 =   Γ + Γ +
     (4) 

 

where ( )
0 0 0 0

,
k

x x x xD D D D kα α α α= ⋯ - times. In case of 1α =  and 1β =  the 

generalized two-dimensional differential transform (3) reduces to the classical 
two-dimensional differential transform (Momani and Odibat (2008)). 

 

The operators in two-dimensional differential transformation method 

(Momani and Odibat (2008)): 
 

Let ( ) ( ), ,, , ,U k h V k hα β α β  and ( ), ,W k hα β  be the differential transformations 

of the functions ( ) ( ), , ,u x y v x y   and ( ),w x y : 

 

If ( ) ( ) ( ), , , ,u x y u x y w x y= ±  then ( ) ( ) ( ), , ,, , , ,U k h V k h W k hα β α β α β= ±  

 

If ( ) ( ), , , ,u x y av x y a R= ∈  then ( ) ( ), ,, , ,U k h aV k hα β α β=  

 

If ( ) ( ) ( ), , , ,u x y v x y w x y=  then ( ) ( ) ( ), , ,

0 0

, , , , ,
k h

r s

U k h V r h s W k r sα β α β α β
= =

= − −∑∑  
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If ( ) ( ) ( )0 0, ,
n m

u x y x x y y
α β

= − −  then ( ) ( ) ( ), , ,U k h k n h mα β δ δ= − −  

 

If ( ) ( ) ( ) ( ), , , , ,u x y v x y w x y q x y=  then 

 

( ) ( ) ( ) ( ), , , ,

0 0 0

, , , , ,
k k r h

r t t

U k h V r h s p W t s Q k r t pα β α β α β α β

−

= = =

= − − − −∑∑∑  

 

If ( ) ( )
0

, , ,xu x y D v x y
α=  0 1,α< ≤  then ( )

( )( )
( )

( ), ,

1 1
, 1, ,

1

k
U k h V k h

k
α β α β

α

α

Γ + +
= +

Γ +
  

 

If ( ) ( ) ( ),u x y f x g y=  and the function ( ) ( ) ,f x x h x= ⋋  where ( )1, ,h x> −⋋ has 

the generalized Taylor series expansion ( ) ( )0

0

,
k

n

n

h x a x x
α

∞

=

= −∑   and (Momani 

and Odibat (2008)), 1β < +⋋  and α  arbitrary or 1,β ≥ +⋋  α  arbitrary and 

0na =  for 0,1,..., 1,n m= −  where 1 .m mβ− < ≤  

 
Then the generalized differential transform (4) becomes 

 

( )
( ) ( )

( ) ( )
( )

0 0

0 0

,
,

1
, , ,

1 1

h
k

x y
x y

U k h D D u x y
k h

α β
α β

α β
∗ ∗

 =   Γ + Γ +
 

 

If ( ) ( )
0

, , ,
x

u x y D v x yγ=  1m mγ− < ≤  and ( ) ( ) ( ), ,v x y f x g y=   then 

 

( )
( )

( )
( ), ,

1
, , .

1

k
U k h V k h

k
α β α β

α γ
γ α

α

Γ + +
= +

Γ +
 

 

If ( ) ( )
0

, , , , ,xu x y t D v x y t
α
∗=  0 1α< ≤  then 

 

( )
( )( )
( )

( ), , , ,

1 1
, , 1, , .

1
m

k
U k h m V k h m

k
α β γ α β

α

α

Γ + +
= +

Γ +
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If ( ) ( )
( ),

,
v x y

u x y a x y
x

∂
⋅ =

∂
  then 

( ) ( ) ( ) ( )
0 0

, 1 , 1, .
k h

i j

U k h k i A i j U k i h j
= =

= − + − + −∑∑  

 

The proofs of t he some properties can be found in Momani and Odibat 

(2008). 

 
 

4. APPLICATION 

Let us consider following time fractional reaction-diffusion equation is called 

as Fisher equation 

 

( ) ( ) ( ) ( )( ), , 6 , 1 , ,t xxD u x t u x t u x t u x y
α
∗ = + − 0,t > ,x R∈ 0 1,α< ≤       (5) 

 
with initial condition 

 

( )
( )

2

1
,0

1 x
u x

e

=
+

                 (6) 

 

where ( ),u u x t=  is a function of the variables x  and .t  Then, by using 

the basic properties of the differential transformation, we can find the 

transformed form of equation (5) as 
 

( )( )
( )

( ) ( )( ) ( ) ( )

( ) ( )

,1 ,1 ,1

,1 ,1

0 0

1 1
, 1 1 2 2, 6 ,

1

6 , , .
k h

r s

h
U k h k k U k h U k h

h

U r h s U k r s

α α α

α α

α

α

= =

Γ + +
+ = + + + +

Γ +

− − −∑∑
  (7) 

 

Using the initial condition (6), we have 

 

( )
1

U 0,0 ,
4

= ( ) ( ) ( ) ( )
1 1 1 1

U 1,0 ,U 2,0 ,U 3,0 ,U 4,0 ,...
4 4 48 96

= − = = =      (8) 
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Now, substituting (8) into (7), we obtain the following ( ),U x t  values 

successively 

( )
( )

( ) ( )

2 3 2

2 3

1 1 1 1 5 5 5
,

4 4 16 48 4 8 16 1

25 25 125
...

16 16 2 1 8 3 1

t
u x t x x x x x

t t
x

α

α α

α

α α

 
= − + + + − − 

Γ + 

 
+ + − + 

Γ + Γ + 

 (9) 

 
which is the solution of (5) in series form. 

 

Finally the differential inverse transform of ( ),U x t  gives 

 

( ) ( )( ) ( )
( ) ( )0 0 2

5
0 0 0

0

1
, , .

11

k
k h

k
x t

k h k

t

k t
u x t U k h x x y y

kt e

α
α β

αβ
α

∞ ∞ ∞

−
= = =

=

 
∂  = − − =

  Γ +∂  +
 

∑∑ ∑

 

We, therefore, obtain 

 

( )
( )

2
5

1
,

1 x t
u x t

e −

 
 =
  +
 

 

 

which is the exact solution. 
 

 

Remark 6 1α =  is the only value of α  for which the exact solution

( )
( )

2
5

1
,

1 x t
u x t

e −

 
 =
  +
 

 is known and the above approximate solutions are 

in good agreement with these exact values. 
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TABLE 1: Numerical values when 1α =  for Equation (5) 

 

t  x  VIMU  HPMu  ADMu  DTMu  Exact Solutionu  

0.1 0.25 0.315940 0.315940 0.317948 0.316080 0.316042 

0.1 0.50 0.249926 0.249926 0.200500 0.250000 0.250000 

0.1 0.75 0.191606 0.191606 0.190964 0.191731 0.191689 

0.1 1.0 0.142411 0.142411 0.140979 0.143229 0.142537 

0.2 0.25 0.459320 0.459320 0.481199 0.463867 0.461284 

0.2 0.50 0.368420 0.368420 0.396941 0.388020 0.387456 

0.2 0.75 0.315478 0.315478 0.315266 0.316080 0.316042 

0.2 1.0 0.249092 0.249092 0.241175 0.250000 0.250000 

0.3 0.25 0.591179 0.591179 0.681440 0.619466 0.604195 

0.3 0.50 0.527635 0.527635 0.581861 0.541666 0.534447 

0.3 0.75 0.459719 0.459719 0.475833 0.463867 0.461284 

0.3 1.0 0.387025 0.387025 0.372917 0.388020 0.387456 

 

It is to be noted that only the fourth-order term of the variational iteration 
solution (Odibat and Momani (2008b)) and homotopy perturbation solution 

(Momani and Odibat (2007a)) only three terms of the decomposition series 

(Odibat and Momani (2008b)) and transform solution were used in evaluating 

the approximate solutions for Table 1. 
 

 

5. CONCLUSION 

In this paper, we compare numerical solutions for time-fractional 

reaction-diffusion equation using homotopy perturbation (Odibat and Momani 

(2008b)), variational iteration (Momani and Odibat (2007a)), adomian 
decomposition (Momani and Odibat (2007a)) and differential transform 

methods. We solve time-fractional reaction-diffusion equation by the 

differential transform method. The main advantage of the method is the fact 
that it provides its user with an analytical approximation, in many cases an 

exact solution, in a rapidly convergent sequence with elegantly computed 

terms. 

 
One example shows that the differential transform method is a powerful 

mathematical tool to solving time fractional reaction-diffusion equation. It is 

also a promising method to solve other nonlinear equations. This method 
solves the problem without any need to discretization of the variables, 

therefore, it is not affected by computation round off errors and one does not 

face the need of large computer memory and time. In our work, we made use of 
the Maple Package to calculate the series obtained from the differential 

transform method. 
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